著名的玛丽莲问题
有三扇门可供选择,其中一扇门后面是汽车,另两扇门后面是山羊。你当然想选中汽车。主持人让你随便选。比如,你选中了一号门。于是,主持人打开了后面是山羊的一扇门,比如是三号门。现在主持人问你:“为了以较大的概率选中汽车,你是坚持选一号门,还是愿意换选二号门?”
答案:
这道题目的标准答案是换选二号门。
解释:
条件概率:全概率和贝叶斯公式解
游戏开始,设P(X)为A、B、C三道门后面有车的概率,则P(A)=P(B)=P(C)=1/3
假定:游戏者任选了一道门A,而主持人(HOST)打开一道后面是羊的门,事实上有两种情况。
1. 主持人了解所有门后面的东东,他一定要打开一扇“羊”门
如果车在A门后面,主持人有B、C两种选择,打开C门(“羊”门)的概率为
P(Host opens C|A) = 1/2
如果车在B门后面,主持人没有选择,只能打开C门
P(Host opens C|B) = 1
如果车在C门后面,主持人一样没得选择,绝对不能开C门
P(Host opens C|C) = 0
所以,主持人打开C门的概率为
P(Host opens C) = P(A)*P(H.o. C|A) + P(B)*P(H.o. C|B) + P(C)*P(H.o. C|C)
= 1/6 + 1/3+ 0 = 1/2
根据贝叶斯公式,在主持人打开C门的条件下,A、B两门后面是车的概率分别为
P(A|Host opens C) = P(A)*P(Host opens C|A) / P(Host opens C)
= (1/6) / (1/2)
= 1/3
P(B|Host opens C) = P(B)*P(Host opens C|B) / P(Host opens C)
= (1/3) / (1/2)
= 2/3
这就是为什么要换二号门的原因。
2. 主持人和游戏者一样蒙在鼓里,他是碰巧打开一扇“羊”门,那么
如果车在A门后面,主持人有B、C两种选择,打开C门的概率为
P(Host opens C|A) = 1/2
如果车在B门后面,主持人一样有B、C两种选择,打开C门的概率还是
P(Host opens C|B) = 1/2
如果车在C门后面,主持人还是有B、C两种选择,只是打开C门不可能看到羊
P(Host opens C|C) = 0
所以,主持人打开C门见到羊的概率为
P(Host opens C) = P(A)*P(H.o. C|A) + P(B)*P(H.o. C|B) + P(C)*P(H.o. C|C)
= 1/6 + 1/6+ 0 = 1/3
根据贝叶斯公式,在主持人打开C门见到羊的条件下,A、B两门后面是车的概率分别为
P(A|Host opens C) = P(A)*P(Host opens C|A) / P(Host opens C)
= (1/6) / (1/3)
= 1/2
P(B|Host opens C) = P(B)*P(Host opens C|B) / P(Host opens C)
= (1/6) / (1/3)
= 1/2
在这种情况下,用一个简单的条件概率式P(A|C.sheep)一样可以得出1/2的结果。这就是“不换”的原因。遗憾的是,从游戏的设置来看,主持人不知情的可能性很小。
(三) 另一种思路,玛丽莲问题的拓展
在三道门的玛丽莲问题中,对游戏者的策略进行观察,他要赢得汽车,可以通过如下途径:
1.第一次选错,主持人打开一道门之后换选
第一次选错的概率为2/3,然后,换选选对的概率为100%,就是说,第一次选择之后再换选,得奖得概率为2/3*100%=2/3
2.第一次选对,主持人打开一道门之后不换。
第一次选对的概率为1/3,不换则得奖率100%。1/3*100%=1/3就是“不换”策略的胜算。
这个方法可以推广到三道门以上的玛丽莲问题拓展,譬如,在四道门的游戏里,主持人依次打开两扇“羊门”,每一次游戏者都有权选择“换”或者“不换”。游戏共有三个步骤,步骤一是“初选”,在步骤二和步骤三,分别有“不换——不换”、“不换——换”、“换——不换”和“换——换”四种策略组合,中奖可能分别为:
1/4
3/4
(3/4)*(1/2)=3/8
1/4(换两次之后换回初选的得奖率)+(3/4)*(1/2)(换两次之后不换回初选)=5/8
可见,选择“不换——换”得策略最有利。
由此可以推广到N道门的游戏中,游戏者最有利的对策是一直坚持不换,直到只剩两扇门还没有打开时再换。
参考资料:百度
= =、这道题我本以为毛二要讲半天的。***她说了一句答案是1/2就跳过了,我差点吐血。